İKİ KÜMENİN KARTEZYEN ÇARPIMI ve SIRALI İKİLİ KONU ANLATIMI 9.SINIF

İKİ KÜMENİN KARTEZYEN ÇARPIMI
SIRALI İKİLİ
a ve b elemanlarının belli bir öncelik sırasına göre (a, b) biçiminde tek bir eleman olarak yazılmasına sıralı ikili ya da kısaca ikili denir.

(a, b) sıralı ikilisinde a ya birinci bileşen, b ye de ikinci bileşen denir.

ÖNEMLİ !
Sıralı ikilide bileşenlerin sırası önemlidir. Bileşenlerin sırası değişirse başka bir ikili elde edilir.

a ≠ b ⇔ (a, b) ≠ (b, a) dır.
(a, b) = (x, y) ⇔ a = x ve b = y dir.

İki Kümenin Kartezyen Çarpımı
A ve B boş olmayan iki küme olsun. Birinci bileşeni A dan, ikinci bileşeni B den alınarak oluşturulan bütün ikililerin kümesine A ile B kümesinin kartezyen çarpımı denir ve A X B şeklinde gösterilir.

A X B = {(a, b) | a ∈ A ve b ∈ B} dir.

A ≠ B için A X B ≠ B X A dır. (kartezyen çarpımın değişme özelliği yoktur.)

A X B X C = (A X B) X C = A X (B X C) (Kartezyen çarpımın birleşme özelliği vardır.)

A X A = A2

A X A X A = A3 tür.

s(A X B) = s(B X A) = s(A).s(B) dir.

A X (B ∪ C) = (A X B) ∪ (A X C)

A X (A ∩ C) = (A X B) ∩ (A X C)

A X (B – C) = (A X B) – (A X C) (Kartezyen çarpımın birleşim, kesişim ve fark işlemi üzerine dağılma özelliği vardır.)

kartezyen çarpımı grafik A X B kartezyen çarpımının grafiği;
A nın elemanları 0x ekseni (yatay eksen) üzerinden, B nin elemanları 0y ekseni (düşey eksen) üzerinden alınarak elde edilen (a, b) ikilileri koordinat düzleminde gösterilir.

Konuya ait diğer başlıklar;
9.SINIF KÜMELER KONU ANLATIMI TEMEL KAVRAMLAR
9.SINIF KÜMELER KONU ANLATIMI KÜMELERDE İŞLEMLER

yorum yaz

Matematik Konu Anlatımları » İki Kümenin Kartezyen Çarpımı ve Sıralı İkili konusu için yapılan yorumlar


Anonim Güzel bir site devamını bekliyoruz

ali çok harika bir site hem faydalı hem anlaşılır bir site on numara valla

  Kategoriler
Anasayfa | İletişim
Copyright © 2012-2022 SanalOkulumuz.com - Bu internet sitesinin kullanıcıları SanalOkulumuz.com Kullanıcı Sözleşmesi, Gizlilik Politikası ve Çerez Politikası'nı kabul etmiş sayılırlar.
SanalOkulumuz.com Dersane, kurs veya özel ders eğitimi alan veya alamayan ilköğretim 1., 2., 3., 4., 5., 6., 7., 8. Sınıf öğrencileri için Matematik, İngilizce ve Fen ve Teknoloji dersleri ile ilgili konu anlatımları, online testler, çözümlü sorular vb. eğitim kaynakları ile teog sınavı ve okul sınavları için yardımcı içerikler barındırmaktadır.