Ücretsiz Online Eğitim Siteniz..İçeriklerimiz Yeni Müfredata Uygundur.

9.SINIF MATEMATİK KÜMELER KONU ANLATIMI KÜMELERDE İŞLEMLER

KÜMELERDE İŞLEMLER
a) Birleşim İşlemi
A kümesi ile B kümesinin bütün elemanlarından oluşan kümeye, bu iki kümenin birleşimi denir.
A ∪ B şeklinde gösterilir. A ∪ B kümesi aşağıdaki şekildeki taralı bölgedir. kümeler birleşim

Kümelerde birleşim ile ilgili özellikler;
A ∪ A = A (Tek kuvvet özelliği)

A ∪ Ø = A

A ∪ E = E

A ∪ B = B ∪ A (Değişme özelliği)

(A ∪ B) ∪ C = A ∪ (B ∪ C) (Birleşme özelliği)

A ∪ B = Ø ise A = Ø ve B = Ø dir.

A ⊂ B ise A ∪ B = B dir.

b) Kesişim İşlemi
A kümesi ile B kümesinin ortak elemanlarından oluşan kümeye, bu iki kümenin kesişimi denir.
A ∩ B şeklinde gösterilir. kümeler kesişim A ∩ B kümesi taralı bölgedir.

Kümelerde kesişim ile ilgili özellikler;

A ∩ A = A dır. (Tek kuvvet özelliği)

A ∩ Ø = Ø ∩ A = Ø

A ∩ E = E ∩ A = A

A ∩ B = B ∩ A (Değişme özelliği)

(A ∩ B) ∩ C = A ∩ (B ∩ C) (Birleşme özelliği)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (Birleşimin kesişim üzerine dağılma özelliği)

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (Kesişimin birleşim üzerine dağılma özelliği)

A ⊂ B ? A ∩ B = A

A ? Ø ve B ? Ø olmak üzere,
A ∩ B = Ø ise A ile B kümelerine ayrık kümeler denir.
ayrık kümeler
A ile B ayrık kümeler

s(A ∪ B) = s(A) + s(B) – s(A ∩ B)

s(A ∪ B ∪ C) = s(A) + s(B) + s(C) – s(A ∩ B) – s(A ∩ C) – s(B ∩ C) + s(A ∩ B ∩ C)

c) Tümleme İşlemi
E, evrensel küme ve A ⊂ E olsun.
Evrensel kümede olan fakat A kümesinde olmayan bütün elemanların oluşturduğu kümeye A nın tümleyeni denir ve Aı ile gösterilir.
tümleme kümeler

Taralı bölge A kümesinin tümleyenidir.

A ∩ Aı = Ø

A ∪ Aı = E

Øı = E, Eı = Ø

(Aı)ı = A

s(A) + s(Aı) = s(E)

A ⊂ B ? Bı ⊂ Aı

(A ∪ B)ı = Aı ∩ Bı (De Morgan kuralı)

(A ∩ B)ı = Aı ∪ Bı (De Morgan kuralı)

d) Fark İşlemi
A ve B herhangi iki küme olsun. A kümesinin elemanları içinden varsa B kümesinin elemanları çıkarılarak elde edilen kümeye “A fark B” kümesi denir ve A \ B ya da A – B şeklinde gösterilir.
kümelerde fark

A – A = Ø

E – A = Aı

A – B = A ∩ Bı

A ? B ise A – B ? B – A

A – Ø = A, Ø – A = Ø

(A – B) ∪ B = A ∪ B

(A – B) – C = A – (B ∪ C)

KÜMELERDEKİ İŞLEMLERLE PROBLEM ÇÖZÜMÜ
problem çözümü şekil Yukarıdaki venn şemasında Almanca bilenlerin kümesi A, Fransızca bilenlerin kümesi F ile gösterilmiştir.

Almanca bilenlerin sayısı s(A) = x + y

Fransızca bilenlerin sayısı s(F) = y + z

Almanca bilmeyenlerin sayısı s(Aı) = t + z

Fransızca bilmeyenlerin sayısı s(Fı) = x + t

Almanca ve Fransızca bilenlerin sayısı s(A ∩ F) = y

Almanca veya Fransızca bilenlerin sayısı s(A ∪ F) = x+y+z

Almanca bilip, Fransızca bilmeyenlerin sayısı s(A – F) = x

Fransızca bilip, Almanca bilmeyenlerin sayısı; s(F – A) = z

Yalnız bir dil bilenlerin sayısı; s(A – F) + s(F – A) = x + z

Bu dillerin hiçbirini bilmeyenlerin sayısı, s(A ∪ F)ı = t

Bu iki dilden en az birini bilenlerin sayısı; s(A∪F)= x+y+z

Bu iki dilden en çok birini bilenlerin sayısı; s(A ∩ F)ı = x+z+t dir.

Konuya ait diğer başlıklar;
9.SINIF KÜMELER KONU ANLATIMI TEMEL KAVRAMLAR
İKİ KÜMENİN KARTEZYEN ÇARPIMI ve SIRALI İKİLİ KONU ANLATIMI 9.SINIF


yorum yaz

Matematik Konu Anlatımları » 9.Sınıf Kümelerde İşlemler Konu Anlatımı için yapılan yorumlar


Twitter Google Yorum